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Abstract

In information extraction, we often wish
to identify all mentions of an entity, such
as a person or organization. Tradition-
ally, a group of words is labeled as an
entity based only on local information.
But information from throughout a doc-
ument can be useful; for example, if
the same word is used multiple times,
it is likely to have the same label each
time. We present a CRF that explicitly
represents dependencies between the la-
bels of pairs of similar words in a doc-
ument. On a standard information ex-
traction data set, we show that learn-
ing these dependencies leads to a 13.7%
reduction in error on the field that had
caused the most repetition errors.

1 Introduction

Most natural-language systems solve many prob-
lem instances in their lifetime. Traditionally,
these instances are solved separately, that is, the
data is assumed to be independent and identically
distributed. But often this assumption does not
hold. There is much current interest in collectively
making related classification decisions, using de-
pendencies between decisions to increase perfor-
mance. In Web page classification, for example,
Taskar et al. (2002) model the fact that pages that
hyperlink to each other are more likely to have
the same type, resulting in increased classification
performance.

Within information extraction, one important
type of error occurs on repeated mentions of the
same field. For example, we often wish to iden-
tify all mentions of an entity, such as a person or
organization, because each mention might contain
different useful information. Furthermore, these
mentions tend to use similar terms. We can take
advantage of this fact by favoring labelings that
treat repeated words identically, and by combining
features from all occurrences so that the extraction
decision can be made based on global information.
However, most extraction systems, whether prob-
abilistic or not, do not take advantage of this de-
pendency, instead treating the separate mentions
independently.

Recently, Bunescu and Mooney (2004) use a
relational Markov network (Taskar et al., 2002) to
collectively classify the mentions in a document,
achieving increased accuracy by learning depen-
dencies between similar mentions. In their work,
however, candidate phrases are extracted heuristi-
cally, which can introduce errors if a true entity
is not selected as a candidate phrase. Ideally, we
would like to perform collective segmentation and
labeling simultaneously, so that the system can
take into account dependencies between the two
tasks. This can be done naturally using probabilis-
tic sequence models.

Traditional probabilistic sequence models, such
as HMMs, are generative, in the sense that they
represent a joint probability distributionp(y,x).
Because this includes a distributionp(x) over the
input features, it is difficult to use arbitrary, over-
lapping features while maintaining tractability. A
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solution to this problem is to model instead the
conditional distributionp(y|x), which is all that
is needed for classification anyway. Because the
model is conditional, dependencies among the fea-
tures in x do not need to be explicitly repre-
sented. Popular conditional models include max-
imum entropy classifiers (Berger et al., 1996) and
conditional random fields (Lafferty et al., 2001).
Conditionally-trained models have been shown to
perform better than generatively-trained models
on many tasks, including document classification
(Taskar et al., 2002), part-of-speech tagging (Rat-
naparkhi, 1996), extraction of data from tables
(Pinto et al., 2003), segmentation of FAQ lists
(McCallum et al., 2000), and noun-phrase seg-
mentation (Sha and Pereira, 2003).

To perform collective labeling, we need to rep-
resent dependencies between distant terms in the
input. But this reveals a general limitation of se-
quence models, whether generatively or condition-
ally trained. Sequence models usually make a
Markov assumption among labels, that is, that any
labelyt is independent of all previous labels given
its immediate predecessorsyt−k . . . yt−1. That is,
such models represent dependence only between
nearby nodes—for example, between bigrams and
trigrams—and cannot represent the higher-order
dependencies that arise when identical words oc-
cur throughout a document.

In the paper we present a conditional model
that collectively segments a document into men-
tions and classifies the mentions by entity type,
taking into account probabilistic dependencies be-
tween distant mentions. Althoughn-gram se-
quence models cannot represent long-distance de-
pendencies, more general graphical models can,
by adding edges between the labels of similar
words. We introduce theskip-chain CRF, which
is a CRF whose structure is a linear chain with ad-
ditional connections between all pairs of similar
words, as shown in Figure 2.

Even though the limitations ofn-gram models
have been widely recognized within natural lan-
guage processing, long-distance dependencies are
difficult to represent in generative models, because
full n-gram models have too many parameters ifn
is large. We avoid this problem by selecting which
skip edges to include based on the input string.

xt xt+1xt-1

yt yt+1yt-1

Figure 1: Graphical representation of linear-chain
CRF. Although the hidden nodes can depend on
observations at any time step, for clarity we have
shown links only to observations at the same time
step.
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John SmithSpeaker:
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SmithProfessor
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will

...
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Figure 2: Graphical representation of skip-chain
CRF. Identical words are connected because they
are likely to have the same label.

This kind of input-specific dependence is difficult
to represent in a generative model, which needs
to generate the input. In other words, conditional
models have been popular because of their flexibil-
ity in allowing overlapping features; in this paper,
we take advantage of their flexibility in allowing
input-specific model structure.

Because our model contains many overlapping
loops, exact inference is intractable. For some of
our documents, a single probability table in the
junction tree would require over 4 GB of memory.
Instead, we perform approximate inference us-
ing a schedule for loopy belief propagation called
tree reparameterization (TRP) (Wainwright et al.,
2001).

We evaluate our model on a standard infor-
mation extraction data set of e-mail seminar an-
nouncements. In the field type on which a linear-
chain CRF had the most repetition errors, which is
speaker name, we show that learning these depen-
dencies with a skip-chain CRF leads to a 13.7%
reduction in error. Failure analysis confirms that
the reduction in error is due to increased recall on
the repeated field mentions.



2 Linear-chain CRFs

Conditional random fields(CRFs) (Lafferty et al.,
2001) are undirected graphical models that encode
a conditional probability distribution using a given
set of features. CRFs are defined as follows. LetG
be an undirected model over sets of random vari-
ablesy andx. As a typical special case,y = {yt}
andx = {xt} for t = 1, . . . , T , so thaty is a
labeling of an observed sequencex.

If C = {{yc,xc}} is the set of cliques inG,
then CRFs define the conditional probability of a
state sequence given the observed sequence as:

pΛ(y|x) =
1

Z(x)

∏
c∈C

Φ(yc,xc), (1)

whereΦ is a potential function and the partition
function Z(x) =

∑
y

∏
c∈C Φ(yc,xc) is a nor-

malization factor over all state sequences for the
sequencex. We assume the potentials factorize
according to a set of features{fk}, which are
given and fixed, so that

Φ(yc,xc) = exp

(∑
k

λkfk(yc,xc)

)
(2)

The model parameters are a set of real weights
Λ = {λk}, one weight for each feature.

Most applications use thelinear-chain CRF, in
which a first-order Markov assumption is made on
the hidden variables. A graphical model for this
is shown in Figure 1. In this case, the cliques
of the conditional model are the nodes and edges,
so that there are feature functionsfk(yt, yt+1,x, t)
for each label transition. (Here we write the fea-
ture functions as potentially depending on the en-
tire input sequence.) Feature functions can be ar-
bitrary functions of their arguments. For example,
a feature functionfk(yt, yt+1,x, t) could be a bi-
nary test that has value 1 if and only ifyt has the
label OTHER, yt+1 has the label SPEAKER, andxt

begins with a capital letter.

3 Skip-chain CRFs

3.1 Model

Linear-chain CRFs cannot represent dependencies
between distant occurrences of similar words. In
this paper, we extend linear-chain CRFs by adding

probabilistic connections between similar words,
that is, adding edges between them in an undi-
rected linear-chain model such as Figure 2. We
call these additional edgesskip edges. Skip edges
can represent dependence between distant nodes,
so that similar words can be labeled similarly.
Also, the features on skip edges can incorporate
information from the context of both endpoints, so
that if the label of one endpoint is more certain, it
can influence the label of the other.

First, there is the choice of which skip edges to
include. We may choose simply to connect iden-
tical words, but more generally we could can any
pair of words that we believe to be similar, for ex-
ample, pairs of words that belong to the same stem
class, or have small edit distance. Of course, if we
simply connected all possible words, inference in
the model would require summing over all possi-
ble state sequences; no efficient dynamic program-
ming algorithm would be available. So we need to
use similarity metrics that result in a sufficiently
sparse graph. In this paper, we focus on named-
entity recognition, so we connect pairs of identical
capitalized words.

This model can be formally defined by adding a
second type of potential to the linear-chain model.
For an instancex, let I = {(u, v)} be the set of
all pairs of sequence positions for which there are
skip edges. Then we can write the probability of a
label sequencey given an inputx and parameters
Λ as

pΛ(y|x) =
1

Z(x)

T−1∏
t=0

Φ(yt, yt+1,x, t)∏
(u,v)∈I

Ψ(yu, yv,x, u, v), (3)

whereΦ is the potential over linear-chain edges,
andΨ is the potential over skip edges. We assume
that each of the potentials factorize according to a
set of featuresfk so that

log Φ(yt, yt+1,x, t) =
∑

k

λkfk(yt, yt+1,x, t)

(4)

log Ψ(yu, yv,x, u, v) =
∑

k

λ′kf
′
k(yu, yv,x, u, v).

(5)



Note that each type of clique has its own set of
features and weights.

For the short distance edges, we factorize our
features as

fk(yt, yt+1,x, t) = pk(yt, yt+1)qk(x, t) (6)

wherepk(yt,c) is a binary function on the assign-
ment, andqk(x, t) is a function solely of the in-
put string, which we call aninput feature. In gen-
eral qk(x, t) can depend on arbitrary positions of
the input string. For example, a useful feature for
NER isqk(x, t) = 1 if and only if xt+1 is a capi-
talized word.

For the skip edges, we factorize our features in
in a way that is similar but allows us to combine
distant features in the sequence. More specifically,
we factorize the features for the skip edges as

f ′k(yu, yv,x, u, v) = p′k(yu, yv, u, v)q′k(x, u, v)
(7)

The input featuresq′k(x, u, v) can combine infor-
mation from the neighborhood ofyu andyv. For
example, one useful feature isq′k(x, u, v) = 1 if
and only if xu = xv = “Booth” and xv−1 =
“Speaker:”. This can be a useful feature if the
context aroundxu, such as “Robert Booth is man-
ager of control engineering. . . ,” may not make
clear whether or not Robert Booth is presenting
a talk, but the context aroundxv is clear, such as
“Speaker: Robert Booth.”1

3.2 Inference

The inference problem is, given an input stringx,
to compute marginal distributionsp(yi|x) or the
most likely (Viterbi) labelingarg maxy p(y|x).
Computing marginals is needed for parameter es-
timation, and the Viterbi labeling is used to label
a new sentence. In linear-chain CRFs, exact in-
ference can be performed efficiently by variants
of the standard dynamic-programming algorithms
for HMMs.

In skip-chain CRFs, inference is much more dif-
ficult. Because the loops can be long and over-
lapping, exact inference is intractable for the data
we consider in the next section. Exact inference

1This example is taken from an actual error made by a
linear-chain CRF on the seminars data set. We present results
from this data set in Section 4.

requires time exponential in the size of a graph’s
junction tree. For the seminars data, 29 of the 485
instances have a maximum clique size of 10 or
greater, and 11 have a maximum clique size of 14
or greater. (The worst instance has a clique with 61
nodes.) For reference, representing a single poten-
tial over 14 nodes requires more memory than can
be addressed in a 32-bit architecture. Thus, exact
inference is not practical for skip-chain CRFs.

Instead, we perform approximate inference us-
ing the loopy belief propagation algorithm. Loopy
belief propagation is an iterative method that is
not guaranteed to converge, but has been found to
be reasonably accurate in practice (Murphy et al.,
1999). We use an asynchronous tree-based sched-
ule known as TRP (Wainwright et al., 2001).

Loopy belief propagation is a generalization of
the forward-backward algorithm for HMMs and
linear-chain CRFs, a fact which provides intu-
ition about the skip-chain CRF model. In the
forward-backward algorithm, probabilistic infor-
mation flows only between neighboring nodes, via
theα andβ recursions. In a skip-chain CRF, be-
lief propagation passes messages not only between
neighboring nodes, as in forward-backward, but
also along the long distance edges, propagating
probabilistic information from distant sequence
locations.

3.3 Parameter Estimation

Given training dataD = {x(i),y(i)}N
i=1, we esti-

mate model parametersΛ = {λk} by maximum a
posteriori (MAP) estimation. We optimize the the
posterior probability

log p(Λ|D) ∝ log p(D|Λ) + log p(Λ) (8)

= L(Λ) + log p(Λ), (9)

whereL(Λ) is the log likelihood

L(Λ) =
∑

i

log pΛ(y(i) | x(i)). (10)

The derivative of the likelihood with respect to
one of the short-distance parametersλk is

∂L
∂λk

=
∑

i

Ck(y(i),x(i))− Ek(y(i),x(i)) (11)



whereCk andEk areconstraintsandexpectations
given by

Ck(y(i),x(i)) =
∑

t

fk(~y
(i)
t , ~y

(i)
t+1, x

(i), t) (12)

Ek(y(i),x(i)) =
∑

t

∑
~yt,~yt+1

pΛ(~yt, ~yt+1 | x(i))

fk(~yt, ~yt+1, x
(i), t) (13)

The derivative ∂L
∂λ′

k
with respect to the long-

distance parameters is similar, withλ′k replacing
λk andf ′k replacingfk.

To reduce overfitting, we define a priorp(Λ)
over parameters. We use a spherical Gaussian
prior with meanµ = 0 and covariance matrix
Σ = σ2I, so that the gradient becomes

∂p(Λ|D)
∂λk

=
∂L
∂λk

− λk

σ2
.

See Peng and McCallum (2004) for a comparison
of different priors for linear-chain CRFs.

The function p(Λ|D) is convex, and can be
optimized by any number of techniques, as in
other maximum-entropy models (Lafferty et al.,
2001; Berger et al., 1996). In the results below,
we use L-BFGS, which has previously outper-
formed other optimization algorithms for linear-
chain CRFs (Sha and Pereira, 2003; Malouf,
2002).

4 Results

We evaluate skip-chain CRFs on a collection
of 485 e-mail messages announcing seminars at
Carnegie Mellon University. The messages are
annotated with the seminar’s starting time, ending
time, location, and speaker. This data set is due to
Dayne Freitag (Freitag, 1998), and has been used
in much previous work.

Often the fields are listed multiple times in the
message. For example, the speaker name might
be included both near the beginning and later on,
in a sentence like “If you would like to meet with
Professor Smith. . . ” It can be useful to find both
such mentions, because different information can
be in the surrounding context of each mention: for
example, the first mention might be near an insti-
tution affiliation, while the second mentions that
Smith is a professor.

wt = w
wt matches[A-Z][a-z]+
wt matches[A-Z][A-Z]+
wt matches[A-Z]
wt matches[A-Z]+
wt matches[A-Z]+[a-z]+[A-Z]+[a-z]
wt appears in list of first names,

last names, honorifics, etc.
wt appears to be part of a time followed by a dash
wt appears to be part of a time preceded by a dash
wt appears to be part of a date
Tt = T
qk(x, t + δ) for all k andδ ∈ [−4, 4]

Table 1: Input featuresqk(x, t) for the seminars
data. In the abovewt is the word at positiont, Tt is
the POS tag at positiont, w ranges over all words
in the training data, andT ranges over all part-of-
speech tags returned by the Brill tagger. The “ap-
pears to be” features are based on hand-designed
regular expressions that can span several tokens.

Field Linear-chain Skip-chain
stime 12.6 17
etime 3.2 5.2
location 6.4 0.6
speaker 30.2 4.8

Table 3: Number of inconsistently mislabeled
tokens, that is, tokens that are mislabeled even
though the same token is labeled correctly else-
where in the document. Learning long-distance
dependencies reduces this kind of error in the
speaker and location fields. Numbers are averaged
over 5 folds.

We evaluate a skip-chain CRF with skip edges
between identical capitalized words. The motiva-
tion for this is that the hardest aspect of this data
set is identifying speakers and locations, and cap-
italized words that occur multiple times in a semi-
nar announcement are likely to be either speakers
or locations.

Table 1 shows the list of input features we used.
For a skip edge(u, v), the input features we used
were simply the disjunction of the input features
atu andv, that is,

q′k(x, u, v) = qk(x, u)⊕ qk(x, v) (14)

where⊕ is binary or. All of our results are av-
eraged over 5-fold cross-validation with an 80/20



System stime etime location speaker overall
BIEN (Peshkin and Pfeffer, 2003) 96.0 98.8 87.1 76.9 89.7
Linear-chain CRF 97.5 97.5 88.3 77.3 90.2
Skip-chain CRF 96.7 97.2 88.1 80.4 90.6

Table 2: Comparison ofF1 performance on the seminars data. The top line gives a dynamic Bayes net
that has been previously used on this data set. The skip-chain CRF beats the previous systems in overall
F1 and on the speaker field, which has proved to be the hardest field of the four. Overall F1 is simply the
average of the F1 scores for the four fields.

split of the data. We report results from both a
linear-chain CRF and a skip-chain CRF with the
same set of input features.

We calculate precision and recall as2

P =
# tokens extracted correctly

# tokens

R =
# tokens extracted correctly

# tokens

As usual, we reportF1 = (2PR)/(P + R).
Table 2 compares a skip-chain CRF to a linear-

chain CRF and to a dynamic Bayes net used in pre-
vious work (Peshkin and Pfeffer, 2003). The skip-
chain CRF does much better than all the other sys-
tems on speaker, which is the label for which the
skip edges would be expected to make the most
difference. On the other fields, however, the skip-
chain CRF does slightly worse (less than 1% ab-
solute F1).

We expected that the skip-chain CRF would
do especially well on the speaker field, because
speaker names tend to appear multiple times in a
document, and a skip-chain CRF can learn to la-
bel the multiple occurrences consistently. To test
this hypothesis, we measure the number ofincon-
sistently mislabeledtokens, that is, tokens that are
mislabeled even though the same token is clas-
sified correctly elsewhere in the document. Ta-
ble 3 compares the number of inconsistently mis-
labels tokens in the test set between linear-chain
and skip-chain CRFs. For the linear-chain CRF,
on average 30.2 true speaker tokens are inconsis-
tently mislabeled. Because the linear-chain CRF
mislabels 121.6 true speaker tokens, this situation

2Previous work on this data set has traditionally measured
precision and recall per document, that is, from each docu-
ment the system extracts only one field of each types. In this
paper we discuss the problem in which we wish to extract all
the mentions in a document, so we cannot compare with this
previous work.

includes 24.7% of the missed speaker tokens. So
treating repeated tokens consistently would seem
to especially benefit recall on speaker.

In fact, on the speaker field, skip-chain CRFs
show a dramatic decrease in inconsistently misla-
beled tokens, from 30.2 to 4.8. Because of this,
skip-chain CRF has much better recall on speaker
tokens than the linear-chain CRF (70.0 R linear
chain, 76.8 R skip chain). This explains the in-
crease in F1 between between linear-chain and
skip-chain CRFs, for the two have similar preci-
sion (average 86.5 P linear chain, 85.1 skip chain).

On the location field, on the other hand, where
we might also expect skip-chain CRFs to perform
better, there is no benefit. We explain this by ob-
serving in Table 3 that inconsistent misclassifica-
tion occurs much less frequently in this field.

5 Summary

We have demonstrated that modeling long-
distance dependencies can be used to obtain more
accurate information extraction. Because our
model is conditional, its structure is free to depend
on the input string. In this paper, we connected
pairs of identical words, on the assumption that
they would tend to have the same label.

The framework for inference and learning is
similar to Relational Markov Networks (Taskar et
al., 2002) and Dynamic CRFs (Sutton et al., 2004).
Like skip-chain CRFs, RMNs vary their graphical
structure based on the input data, but in practice
RMNs have been used for classification instead of
sequence labeling. DCRFs, on the other hand, are
sequence models, but the skip-chain CRF model
is not a DCRF, because usually different long-
distance edges are used for each input string.

The skip-chain CRF can also be viewed as
performing extraction while taking into account



a simple form of coreference information, since
the reason that identical words are likely to have
similar tags is that they are likely to be coref-
erent. Thus, this model is a step toward joint
probabilistic models for extraction and data min-
ing as advocated by McCallum and Jensen (2003).
An example of such a joint model is the one of
Wellner et al. (2004), which jointly segments cita-
tions in research papers and predicts which cita-
tions refer to the same paper.
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